Wolbachia-Mediated Cytoplasmic Incompatibility Is Associated with Impaired Histone Deposition in the Male Pronucleus

نویسندگان

  • Frédéric Landmann
  • Guillermo A. Orsi
  • Benjamin Loppin
  • William Sullivan
چکیده

Wolbachia is a bacteria endosymbiont that rapidly infects insect populations through a mechanism known as cytoplasmic incompatibility (CI). In CI, crosses between Wolbachia-infected males and uninfected females produce severe cell cycle defects in the male pronucleus resulting in early embryonic lethality. In contrast, viable progeny are produced when both parents are infected (the Rescue cross). An important consequence of CI-Rescue is that infected females have a selective advantage over uninfected females facilitating the rapid spread of Wolbachia through insect populations. CI disrupts a number of prophase and metaphase events in the male pronucleus, including Cdk1 activation, chromosome condensation, and segregation. Here, we demonstrate that CI disrupts earlier interphase cell cycle events. Specifically, CI delays the H3.3 and H4 deposition that occurs immediately after protamine removal from the male pronucleus. In addition, we find prolonged retention of the replication factor PCNA in the male pronucleus into metaphase, indicating progression into mitosis with incompletely replicated DNA. We propose that these CI-induced interphase defects in de novo nucleosome assembly and replication are the cause of the observed mitotic condensation and segregation defects. In addition, these interphase chromosome defects likely activate S-phase checkpoints, accounting for the previously described delays in Cdk1 activation. These results have important implications for the mechanism of Rescue and other Wolbachia-induced phenotypes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of delayed nuclear envelope breakdown and mitosis in Wolbachia-induced cytoplasmic incompatibility.

The bacterium Wolbachia manipulates reproduction in millions of insects worldwide; the most common effect is cytoplasmic incompatibility (CI). We found that CI resulted from delayed nuclear envelope breakdown of the male pronucleus in Nasonia vitripennis. This caused asynchrony between the male and female pronuclei and, ultimately, loss of paternal chromosomes at the first mitosis. When Wolbach...

متن کامل

A genetic test of the mechanism of Wolbachia-induced cytoplasmic incompatibility in Drosophila.

Cytoplasmic bacteria of the genus Wolbachia are best known as the cause of cytoplasmic incompatibility (CI): many uninfected eggs fertilized by Wolbachia-modified sperm from infected males die as embryos. In contrast, eggs of infected females rescue modified sperm and develop normally. Although Wolbachia cause CI in at least five insect orders, the mechanism of CI remains poorly understood. Her...

متن کامل

A genetic test of the role of the maternal pronucleus in Wolbachia-induced cytoplasmic incompatibility in Drosophila melanogaster.

Cytoplasmic incompatibility (CI) is a reproductive sterility found in arthropods that is caused by the endoparasitic bacteria Wolbachia. In CI, host progeny fail to develop during early embryogenesis if Wolbachia-infected males fertilize uninfected females. It is widely accepted that this lethality is caused by some unknown Wolbachia-induced modification of the paternal nuclear material in the ...

متن کامل

A New Model and Method for Understanding Wolbachia-Induced Cytoplasmic Incompatibility

Wolbachia are intracellular bacteria transmitted almost exclusively vertically through eggs. In response to this mode of transmission, Wolbachia strategically manipulate their insect hosts' reproduction. In the most common manipulation type, cytoplasmic incompatibility, infected males can only mate with infected females, but infected females can mate with all males. The mechanism of cytoplasmic...

متن کامل

CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo.

The organization of chromatin affects all aspects of nuclear DNA metabolism in eukaryotes. H3.3 is an evolutionarily conserved histone variant and a key substrate for replication-independent chromatin assembly. Elimination of chromatin remodeling factor CHD1 in Drosophila embryos abolishes incorporation of H3.3 into the male pronucleus, renders the paternal genome unable to participate in zygot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Pathogens

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2009